Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674966

RESUMEN

The growing prevalence of bacterial and viral infections, highlighted by the recent COVID-19 pandemic, urgently calls for new antimicrobial strategies. To this end, we have synthesized and characterized a novel fatty acid epoxy-ester plasticizer for polymers, named GDE. GDE is not only sustainable and user-friendly but also demonstrates superior plasticizing properties, while its epoxy components improve the heat stability of PVC-based matrices. A key feature of GDE is its ability to confer antimicrobial properties to surfaces. Indeed, upon contact, this material can effectively kill enveloped viruses, such as herpes simplex virus type 1 (HSV-1) and the ß-coronavirus prototype HCoV-OC43, but it is ineffective against nonenveloped viruses like human adenovirus (HAdV). Further analysis using transmission electron microscopy (TEM) on HSV-1 virions exposed to GDE showed significant structural damage, indicating that GDE can interfere with the viral envelope, potentially causing leakage. Moreover, GDE demonstrates antibacterial activity, albeit to a lesser extent, against notorious pathogens such as Staphylococcus aureus and Escherichia coli. Overall, this newly developed plasticizer shows significant potential as an antimicrobial agent suitable for use in both community and healthcare settings to curb the spread of infections caused by microorganisms contaminating physical surfaces.

2.
Front Cell Infect Microbiol ; 14: 1359367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529474

RESUMEN

Citrullination is an emerging post-translational modification catalyzed by peptidyl-arginine deiminases (PADs) that convert peptidyl-arginine into peptidyl-citrulline. In humans, the PAD family consists of five isozymes (PADs 1-4, 6) involved in multiple diseases, including cancer. Given that high-risk (hr) human papillomaviruses (HPVs) are the etiological agents of cervical cancer, in this study, we sought to determine whether PAD-mediated protein citrullination would play a functional role in the HPV-driven transformation of epithelial cells. Here we show that both total protein citrullination and PAD4 expression levels are significantly associated with cervical cancer progression. Specifically, epithelial immunostaining for PAD4 revealed an increasingly higher histoscore from low-grade (CIN1) to high-grade (CIN2, CIN3) cervical intraepithelial neoplasia, and invasive squamous cell carcinoma (SCC) lesions, raising the attractive possibility that PAD4 may be used as tumor staging markers. Furthermore, taking advantage of the epidermoid cervical cancer cell line CaSki, which harbors multiple copies of the integrated HPV16 genome, we show that the expression of E6 and E7 HPV oncoproteins is impaired by treatment with the pharmacological pan-PAD inhibitor BB-Cl-amidine. Consistently, p53 and p21, two targets of HPV oncoproteins, are upregulated by the PAD inhibitor, which undergoes cell growth arrest and apoptosis. Altogether, these findings highlight a novel mechanism by which hrHPVs alter host regulatory pathways involved in cell cycle and survival to gain viral fitness, raising the possibility that PADs may represent an attractive target for developing novel host-targeting antivirals effective in preventing cervical cancer progression.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Citrulinación , Proteínas E7 de Papillomavirus/genética , Arginina
3.
Commun Biol ; 7(1): 292, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459109

RESUMEN

Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.


Asunto(s)
Infecciones por Citomegalovirus , Interleucina-6 , Humanos , Interleucina-6/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Citomegalovirus/genética , Células Epiteliales/patología , ADN
4.
Microorganisms ; 12(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38399777

RESUMEN

The rise of drug resistance to antivirals poses a significant global concern for public health; therefore, there is a pressing need to identify novel compounds that can effectively counteract strains resistant to current antiviral treatments. In light of this, researchers have been exploring new approaches, including the investigation of natural compounds as alternative sources for developing potent antiviral therapies. Thus, this work aimed to evaluate the antiviral properties of the organic-soluble fraction of a root exudate derived from the tomato plant Solanum lycopersicum in the context of herpesvirus infections. Our findings demonstrated that a root exudate from Solanum lycopersicum exhibits remarkable efficacy against prominent members of the family Herpesviridae, specifically herpes simplex virus type 1 (HSV-1) (EC50 25.57 µg/mL, SI > 15.64) and human cytomegalovirus (HCMV) (EC50 9.17 µg/mL, SI 32.28) by inhibiting a molecular event during the herpesvirus replication phase. Moreover, the phytochemical fingerprint of the Solanum lycopersicum root exudate was characterized through mass spectrometry. Overall, these data have unveiled a novel natural product with antiherpetic activity, presenting a promising and valuable alternative to existing drugs.

5.
PLoS Pathog ; 19(12): e1011849, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055760

RESUMEN

Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Citrulinación , Factores de Restricción Antivirales , Proteínas Virales/metabolismo , Replicación Viral , Antivirales/farmacología , Antivirales/metabolismo
6.
ACS Infect Dis ; 9(7): 1310-1318, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37358826

RESUMEN

The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV). Here we show that the synthetic SLs TH-EGO and EDOT-EGO impair ß-coronavirus replication including SARS-CoV-2 and the common cold human coronavirus HCoV-OC43. Interestingly, in silico simulations suggest the binding of SLs in the SARS-CoV-2 main protease (Mpro) active site, and this was further confirmed by an in vitro activity assay. Overall, our results highlight the potential efficacy of SLs as broad-spectrum antivirals against ß-coronaviruses, which may provide the rationale for repurposing this class of hormones for the treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Antivirales/farmacología , Antivirales/química , SARS-CoV-2 , Péptido Hidrolasas
7.
Dermatology ; 239(4): 584-591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37075721

RESUMEN

BACKGROUND: COronaVIrus Disease 19 (COVID-19) is associated with a wide spectrum of skin manifestations, but SARS-CoV-2 RNA in lesional skin has been demonstrated only in few cases. OBJECTIVE: The objective of this study was to demonstrate SARS-CoV-2 presence in skin samples from patients with different COVID-19-related cutaneous phenotypes. METHODS: Demographic and clinical data from 52 patients with COVID-19-associated cutaneous manifestations were collected. Immunohistochemistry and digital PCR (dPCR) were performed in all skin samples. RNA in situ hybridization (ISH) was used to confirm the presence of SARS-CoV-2 RNA. RESULTS: Twenty out of 52 (38%) patients presented SARS-CoV-2 positivity in the skin. Among these, 10/52 (19%) patients tested positive for spike protein on immunohistochemistry, five of whom had also positive testing on dPCR. Of the latter, one tested positive both for ISH and ACE-2 on immunohistochemistry while another one tested positive for nucleocapsid protein. Twelve patients showed positivity only for nucleocapsid protein on immunohistochemistry. CONCLUSIONS: SARS-CoV-2 was detected only in 38% of patients, without any association with a specific cutaneous phenotype, suggesting that the pathophysiology of cutaneous lesions mostly depends on the activation of the immune system. The combination of spike and nucleocapsid immunohistochemistry has higher diagnostic yield than dPCR. Skin persistence of SARS-CoV-2 may depend on timing of skin lesions, viral load, and immune response.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Inmunohistoquímica , ARN Viral/análisis , ARN Viral/metabolismo , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Reacción en Cadena de la Polimerasa , Biopsia , Prueba de COVID-19
8.
J Invest Dermatol ; 143(5): 740-750.e4, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36481357

RESUMEN

Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between ß-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, ß-HPV, and UVB exposure promotes skin cancer development.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias Cutáneas , Humanos , Ratones , Animales , Ratones Transgénicos , Virus del Papiloma Humano , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Piel/patología , Carcinogénesis/patología , Papillomaviridae/genética , Infecciones por Papillomavirus/complicaciones
10.
Antiviral Res ; 200: 105278, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288208

RESUMEN

The current SARS-CoV-2 pandemic, along with the likelihood that new coronavirus strains will appear in the nearby future, highlights the urgent need to develop new effective antiviral agents. In this scenario, emerging host-targeting antivirals (HTAs), which act on host-cell factors essential for viral replication, are a promising class of antiviral compounds. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, is endowed with a potent inhibitory activity against human beta-coronaviruses (HCoVs). Specifically, we show that infection of human fetal lung fibroblasts with HCoV-OC43 leads to enhanced protein citrullination through transcriptional activation of PAD4, and that inhibition of PAD4-mediated citrullination with either of the two pan-PAD inhibitors Cl-A and BB-Cl or the PAD4-specific inhibitor GSK199 curbs HCoV-OC43 replication. Furthermore, we show that either Cl-A or BB-Cl treatment of African green monkey kidney Vero-E6 cells, a widely used cell system to study beta-CoV replication, potently suppresses HCoV-OC43 and SARS-CoV-2 replication. Overall, our results demonstrate the potential efficacy of PAD inhibitors, in suppressing HCoV infection, which may provide the rationale for the repurposing of this class of inhibitors for the treatment of COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus Humano OC43 , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Humanos , SARS-CoV-2
11.
Blood Cancer J ; 12(1): 8, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042847

RESUMEN

Understanding antibody-based SARS-CoV-2 immunity in hematologic malignancy (HM) patients following infection is crucial to inform vaccination strategies for this highly vulnerable population. This cross-sectional study documents the anti-SARS-CoV-2 humoral response and serum neutralizing activity in 189 HM patients recovering from a PCR-confirmed infection. The overall seroconversion rate was 85.7%, with the lowest values in patients with lymphoid malignancies or undergoing chemotherapy. Therapy-naive patients in the "watch and wait" status were more likely to seroconvert and display increased anti-s IgG titers. Enhanced serum neutralizing activity was observed in the following SARS-CoV-2-infected HM patient groups: (i) males; (ii) severe COVID-19; and (iii) "watch and wait" or "complete/partial response". The geometric mean (GeoMean) ID50 neutralization titers in patients analyzed before or after 6 months post-infection were 299.1 and 306.3, respectively, indicating that >50% of the patients in either group had a neutralization titer sufficient to provide 50% protection from symptomatic COVID-19. Altogether, our findings suggest that therapy-naive HM patients mount a far more robust immune response to SARS-CoV-2 infection vs. patients receiving anti-cancer treatment, raising the important question as to whether HM patients should be vaccinated before therapy and/or receive vaccine formats capable of better recapitulating the natural infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antineoplásicos/administración & dosificación , COVID-19/inmunología , Neoplasias Hematológicas , Inmunidad Humoral , SARS-CoV-2/inmunología , Anciano , Femenino , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/inmunología , Humanos , Masculino , Persona de Mediana Edad
12.
Viruses ; 13(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835076

RESUMEN

Longitudinal mapping of antibody-based SARS-CoV-2 immunity is critical for public health control of the pandemic and vaccine development. We performed a longitudinal analysis of the antibody-based immune response in a cohort of 100 COVID-19 individuals who were infected during the first wave of infection in northern Italy. The SARS-CoV-2 humoral response was tested using the COVID-SeroIndex, Kantaro Quantitative SARS-CoV-2 IgG Antibody RUO Kit (R&D Systems, Bio-Techne, Minneapolis, USA) and pseudotype-based neutralizing antibody assay. Using sequential serum samples collected from 100 COVID-19 recovered individuals from northern Italy-mostly with mild disease-at 2 and 10 months after their first positive PCR test, we show that 93% of them seroconverted at 2 months, with a geometric mean (GeoMean) half-maximal neutralization titer (NT50) of 387.9. Among the 35 unvaccinated subjects retested at 10 months, 7 resulted seronegative, with an 80% drop in seropositivity, while 28 showed decreased anti-receptor binding domain (RBD) and anti-spike (S) IgG titers, with a GeoMean NT50 neutralization titer dropping to 163.5. As an NT50 > 100 is known to confer protection from SARS-CoV-2 re-infection, our data show that the neutralizing activity elicited by the natural infection has lasted for at least 10 months in a large fraction of subjects.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Infecciones Asintomáticas , COVID-19/epidemiología , COVID-19/virología , Prueba Serológica para COVID-19 , Estudios de Cohortes , Femenino , Humanos , Inmunidad , Inmunidad Humoral , Inmunoglobulina G/sangre , Italia/epidemiología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Seroconversión , Desarrollo de Vacunas
13.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34382796

RESUMEN

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Glucosamina/farmacología , Glucolípidos/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/metabolismo , Adyuvantes Inmunológicos/toxicidad , Animales , Femenino , Glucosamina/síntesis química , Glucosamina/metabolismo , Glucosamina/toxicidad , Glucolípidos/síntesis química , Glucolípidos/metabolismo , Glucolípidos/toxicidad , Humanos , Inflamasomas/metabolismo , Interleucina-1/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
14.
Cancer Res ; 81(18): 4794-4807, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193441

RESUMEN

HSP90 is secreted by cancer cells into the extracellular milieu, where it exerts protumoral activities by activating extracellular substrate proteins and triggering autocrine signals through cancer cell surface receptors. Emerging evidence indicates that HSP90 co-chaperones are also secreted and may direct HSP90 extracellular activities. In this study, we found that the HSP90 co-chaperone Morgana is released by cancer cells and, in association with HSP90, induces cancer cell migration through TLR2, TLR4, and LRP1. In syngeneic cancer mouse models, a mAb targeting Morgana extracellular activity reduced primary tumor growth via macrophage-dependent recruitment of CD8+ T lymphocytes, blocked cancer cell migration, and inhibited metastatic spreading. Overall, these data define Morgana as a new player in the HSP90 extracellular interactome and suggest that Morgana may regulate HSP90 activity to promote cancer cell migration and suppress antitumor immunity. SIGNIFICANCE: This work suggests the potential therapeutic value of targeting the extracellular HSP90 co-chaperone Morgana to inhibit metastasis formation and enhance the CD8+ T-cell-mediated antitumor immune response.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Inmunidad/efectos de los fármacos , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Espacio Extracelular/metabolismo , Xenoinjertos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Transducción de Señal , Receptores Toll-Like/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nat Commun ; 12(1): 3910, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162877

RESUMEN

Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5'-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection.


Asunto(s)
Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Procesamiento Proteico-Postraduccional , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Citrulinación , Citomegalovirus/fisiología , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Proteínas de Resistencia a Mixovirus/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Vero , Proteínas Virales/metabolismo
17.
Front Immunol ; 12: 532484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897679

RESUMEN

Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating ("aggressive") HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the "aggressive" HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/inmunología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/virología , Ligandos , Masculino , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922336

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with a long latency period and dismal prognosis. Recently, tazemetostat (EPZ-6438), an inhibitor of the histone methyltransferase EZH2, has entered clinical trials due to the antiproliferative effects reported on MPM cells. However, the direct and indirect effects of epigenetic reprogramming on the tumor microenvironment are hitherto unexplored. To investigate the impact of tumor-associated macrophages (TAMs) on MPM cell responsiveness to tazemetostat, we developed a three-dimensional MPM spheroid model that recapitulates in vitro, both monocytes' recruitment in tumors and their functional differentiation toward a TAM-like phenotype (Mo-TAMs). Along with an increased expression of genes for monocyte chemoattractants, inhibitory immune checkpoints, immunosuppressive and M2-like molecules, Mo-TAMs promote tumor cell proliferation and spreading. Prolonged treatment of MPM spheroids with tazemetostat enhances both the recruitment of Mo-TAMs and the expression of their protumor phenotype. Therefore, Mo-TAMs profoundly suppress the antiproliferative effects due to EZH2 inhibition in MPM cells. Overall, our findings indicate that TAMs are a driving force for MPM growth, progression, and resistance to tazemetostat; therefore, strategies of TAM depletion might be evaluated to improve the therapeutic efficacy of pharmacological inhibition of EZH2.


Asunto(s)
Benzamidas/farmacología , Compuestos de Bifenilo/farmacología , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Mesotelioma/patología , Monocitos/patología , Morfolinas/farmacología , Piridonas/farmacología , Esferoides Celulares/patología , Macrófagos Asociados a Tumores/patología , Proliferación Celular , Humanos , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Monocitos/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Células Tumorales Cultivadas , Microambiente Tumoral , Macrófagos Asociados a Tumores/efectos de los fármacos
19.
Viruses ; 13(2)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670195

RESUMEN

A causal link between viral infections and autoimmunity has been studied for a long time and the role of some viruses in the induction or exacerbation of systemic lupus erythematosus (SLE) in genetically predisposed patients has been proved. The strength of the association between different viral agents and SLE is variable. Epstein-Barr virus (EBV), parvovirus B19 (B19V), and human endogenous retroviruses (HERVs) are involved in SLE pathogenesis, whereas other viruses such as Cytomegalovirus (CMV) probably play a less prominent role. However, the mechanisms of viral-host interactions and the impact of viruses on disease course have yet to be elucidated. In addition to classical mechanisms of viral-triggered autoimmunity, such as molecular mimicry and epitope spreading, there has been a growing appreciation of the role of direct activation of innate response by viral nucleic acids and epigenetic modulation of interferon-related immune response. The latter is especially important for HERVs, which may represent the molecular link between environmental triggers and critical immune genes. Virus-specific proteins modulating interaction with the host immune system have been characterized especially for Epstein-Barr virus and explain immune evasion, persistent infection and self-reactive B-cell "immortalization". Knowledge has also been expanding on key viral proteins of B19-V and CMV and their possible association with specific phenotypes such as antiphospholipid syndrome. This progress may pave the way to new therapeutic perspectives, including the use of known or new antiviral drugs, postviral immune response modulation and innate immunity inhibition. We herein describe the state-of-the-art knowledge on the role of viral infections in SLE, with a focus on their mechanisms of action and potential therapeutic targets.


Asunto(s)
Citomegalovirus/inmunología , Retrovirus Endógenos/inmunología , Herpesvirus Humano 4/inmunología , Inmunidad Innata/inmunología , Lupus Eritematoso Sistémico/inmunología , Parvovirus B19 Humano/inmunología , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/virología , Autoinmunidad/inmunología , Infecciones por Citomegalovirus/patología , Retrovirus Endógenos/fisiología , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Lupus Eritematoso Sistémico/virología , Infecciones por Parvoviridae/patología , Parvovirus B19 Humano/fisiología
20.
PLoS Pathog ; 16(9): e1008811, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32903274

RESUMEN

Damage-associated molecular patterns (DAMPs) are endogenous molecules activating the immune system upon release from injured cells. Here we show that the IFI16 protein, once freely released in the extracellular milieu of chronically inflamed tissues, can function as a DAMP either alone or upon binding to lipopolysaccharide (LPS). Specifically, using pull-down and saturation binding experiments, we show that IFI16 binds with high affinity to the lipid A moiety of LPS. Remarkably, IFI16 DAMP activity is potentiated upon binding to subtoxic concentrations of strong TLR4-activating LPS variants, as judged by TLR4-MD2/TIRAP/MyD88-dependent IL-6, IL-8 and TNF-α transcriptional activation and release in stimulated monocytes and renal cells. Consistently, using co-immunoprecipitation (co-IP) and surface plasmon resonance (SPR) approaches, we show that IFI16 is a specific TLR4-ligand and that IFI16/LPS complexes display a faster stimulation turnover on TLR4 than LPS alone. Altogether, our findings point to a novel pathomechanism of inflammation involving the formation of multiple complexes between extracellular IFI16 and subtoxic doses of LPS variants, which then signal through TLR4.


Asunto(s)
Inflamación/inmunología , Neoplasias Renales/inmunología , Leucemia/inmunología , Lipopolisacáridos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptor Toll-Like 4/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Leucemia/metabolismo , Leucemia/patología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...